Hdf1, a yeast Ku-protein homologue, is involved in illegitimate recombination, but not in homologous recombination.
نویسندگان
چکیده
Hdf1 is the yeast homologue of the mammalian 70 kDa subunit of Ku-protein, which has DNA end-binding activity and is involved in DNA double-strand break repair and V(D)J recombination. To examine whether Hdf1 is involved in illegitimate recombination, we have measured the rate of deletion mutation caused by illegitimate recombination on a plasmid in an hdf1 disruptant. The hdf1 mutation reduced the rate of deletion formation by 20-fold, while it did not affect mitotic and meiotic homologous recombinations between two heteroalleles or homologous recombination between direct repeats. Hence Hdf1 participates in illegitimate recombination, but not in homologous recombination, in contrast to Rad52, Rad50, Mre11 and Xrs2, which are involved in both homologous and illegitimate recombination. The illegitimate recombination in the hdf1 disruptant took place between recombination sites that shared short regions of homology (1-4 bp), as was observed in the wild-type. Based on the DNA end-binding activity of Hdf1, we discuss models in which Hdf1 plays an important role in the late step of illegitimate recombination.
منابع مشابه
The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination.
In mammalian cells, all subunits of the DNA-dependent protein kinase (DNA-PK) have been implicated in the repair of DNA double-strand breaks and in V(D)J recombination. In the yeast Saccharomyces cerevisiae, we have examined the phenotype conferred by a deletion of HDF1, the putative homologue of the 70-kD subunit of the DNA-end binding Ku complex of DNA-PK. The yeast gene does not play a role ...
متن کاملMutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae.
DNA double-strand break (DSB) repair in mammalian cells is dependent on the Ku DNA binding protein complex. However, the mechanism of Ku-mediated repair is not understood. We discovered a Saccharomyces cerevisiae gene (KU80) that is structurally similar to the 80-kDa mammalian Ku subunit. Ku8O associates with the product of the HDF1 gene, forming the major DNA end-binding complex of yeast cells...
متن کاملDesigning E1 Deleted Adenoviral Vector by Homologous Recombination
Adenoviruses are used extensively to deliver genes into mammalian cells, particularly where there is a requirement for high-level expression of transgene products in cultured cells, or for use as recombinant viral vaccines or in gene therapy. In spite of their usefulness, the construction of adenoviral vectors (AdV) is a cumbersome and lengthy process that is not readily amenable to the generat...
متن کاملRadiation-induced chromosome aberrations in Saccharomyces cerevisiae: influence of DNA repair pathways.
Radiation-induced chromosome aberrations, particularly exchange-type aberrations, are thought to result from misrepair of DNA double-strand breaks. The relationship between individual pathways of break repair and aberration formation is not clear. By electrophoretic karyotyping of single-cell clones derived from irradiated cells, we have analyzed the induction of stable aberrations in haploid y...
متن کاملThe DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae.
In mammalian cells, the Ku autoantigen is an end- binding DNA protein required for the repair of DNA breaks [Troelstra, C. and Jaspers, N.G.J. (1994) Curr. Biol., 4, 1149- 1151]. A yeast gene (HDF1) encoding a putative homologue of the 70 kDa subunit of Ku has recently been identified [Feldmann, H. and Winnacker, E. L. (1993) J. Biol. Chem., 268, 12895- 12900]. We find that hdf1 mutant strains ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 24 11 شماره
صفحات -
تاریخ انتشار 1996